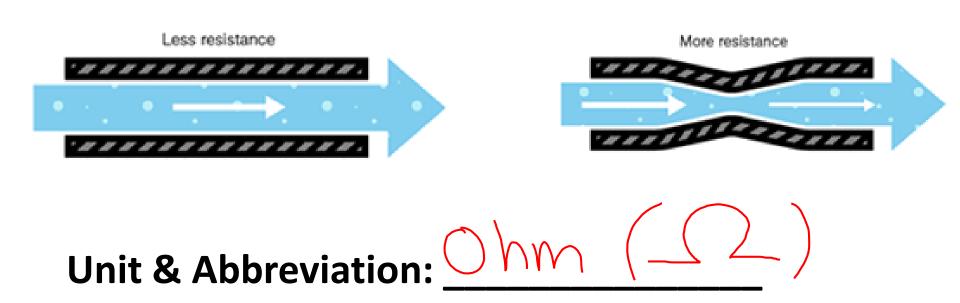
Daily (formative) Quiz

- Compare current and voltage using a water hose as an analogy
- Does our classroom have a fuse box or a circuit breaker box? How do you know?
- Why did the microwave and Keurig lose power when they were both on?
- Why don't birds get electrocuted when they sit on power lines?



2.1 CONTROLLING THE FLOW OF ELECTRICAL CURRENT

RESISTANCE	measure of how difficult it is for electrons to flow through a substance
RESISTOR	device that provides resistance to the flow of electrons ; often used to control electrical current

Resistance

 Resistance in electricity is like the size of the water pipe in the water analogy.

Mathematical Notation:

Resistors

 Electrons in a current always flow towards the positive end of the voltage source.

 Resistors decrease the amount of current flowing past them

Examples:

Tungsten filament of a light bulb

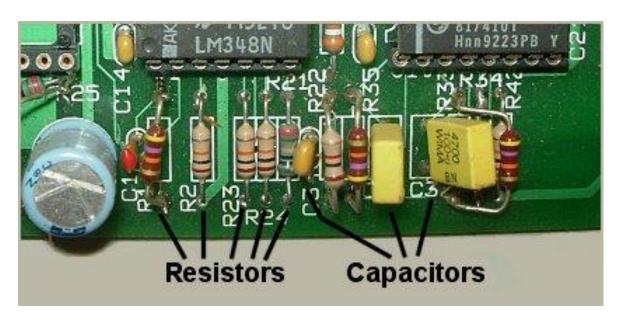
"Neon" signs

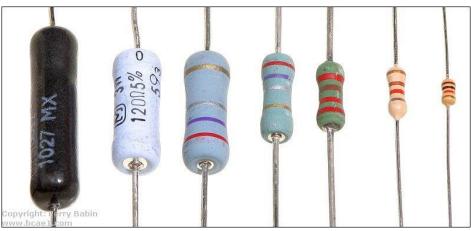
Electric stove/ cooktop

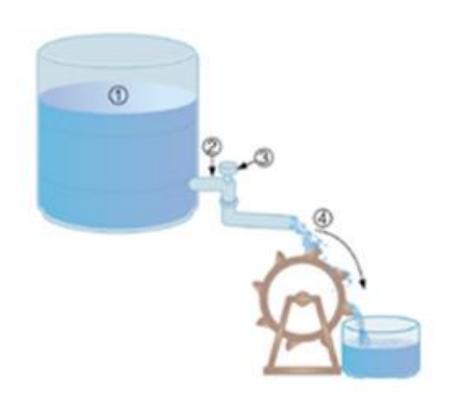
Loads Act as Resistors

- The more resistance a material has, the more energy it gains from each passing electron
- This energy is often released as heat or light

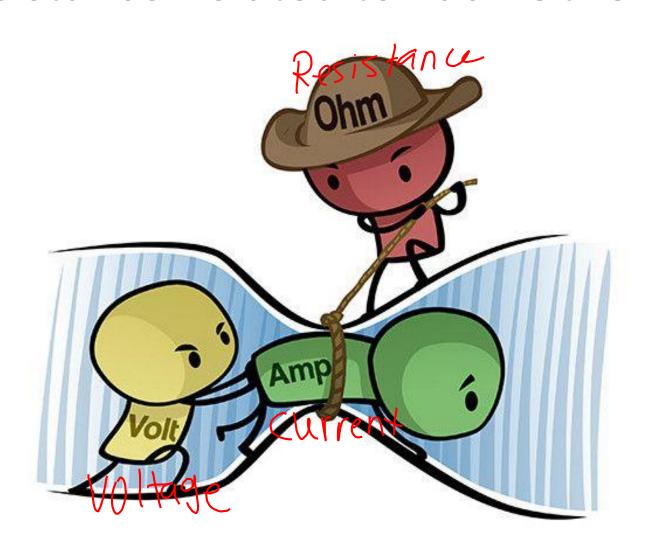
Tungsten filament of a light bulb

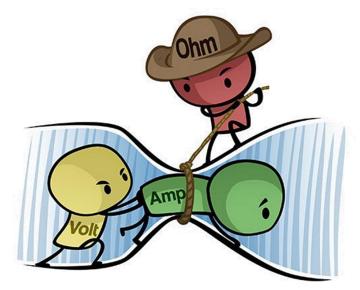



"Neon" signs


Electric stove/ cooktop

Other Resistors


Their only purpose in life is to reduce current


2.2 MODELLING AND MEASURING ELECTRICITY

How are Current, Voltage, and Resistance Related to Each Other?

Ohm's Law

- States that as long as temperature stays the same
 - if you increase the voltage in a circuit, the current also increases
 - if voltage stays the same but resistance increases,
 then current decreases

Ohm's Law

$$V = I \times R$$

Voltage, Current, and Resistance

Quantity	Unit &	Mathemati
	abbreviation	cal
		Notation
Voltage	Volts (v)	V
Current	Amps (A)	
Resistance	Ohms (Ω)	R

Using Ohm's Law Formula

- 1. Identify known quantities
- 2. Identify unknown quantities
- 3. Use the appropriate formula
- 4. Solve the problem

Example 1 V=IxR

What is the potential difference (voltage) across a 1500 Ω resistor carrying a current of 0.075 A?

$$R = 1500 \le 2$$

 $I = 0.075 A$
 $V = ?$

$$V = 0.075A$$
 $x 1500-52$
 $V = 112.5$

Answer = 112.5 V

Example 2

An electric stove is connected to a 240 V outlet. The current through the stove is 20 A. Calculate the resistance in Ohms.

Answer = 12.0Ω

$$V = IR$$

$$V = IR$$

$$V = R$$

$$V$$

Example 3

A 30 V battery creates a current through a 15 Ω resistor. What is the battery's current?

$$V = 30V$$
 $R = 15 \Omega$
 $I = ?$

$$V = IR$$

$$R$$

$$T = V = 30V = 20A$$

$$I = V = 150$$

2.0 A

Example 4

A toaster with a resistance of 145 Ω is connected to a 120 V wall outlet. What current will flow through the toaster?