$V=I R$
 Daily Quiz

1. What voltage is applied to a 5.0Ω resistor if the current is 1.5 A ?
2. A voltage of 80 V is applied across a 20Ω resistor. What is the current through the resistor?
3. The current running through a starter motor in a car is 240 A . If this motor is connected to a 12 V battery, what is the resistance of the motor?

Daily Quiz - Answers

1. What voltage is applied to a 5.0Ω resistor if the current is 1.5 A ? $V=\perp \times R$

$V=I R$

Daily Quiz - Answers

2. A voltage of 80 V is applied across a 20Ω resistor. What is the current through the resistor? $\begin{aligned} & V=I \times R \\ & I\end{aligned}=\frac{V}{R}=\frac{80 V}{20 \Omega}=4 A$

$V=I R$

Daily Quiz - Answers

3. The current running through a starter motor in a car is 240 A . If this motor is connected to a 12 V battery, what is the resistance of the motor?

2.3 ANALYZING AND DRAWING ELECTRICAL CIRCUITS

Virtual Circuit Challenge!!

Circuit Construction Kit: DC

- Can you light a bulb?
- Can you increase or decrease the bulb's brightness?
- Can you make 2 bulbs in the same circuit have different brightness?
- Can you make a circuit where one bulb is switched off while another is on?
- Can you set your circuit on fire?

Why is the brightness different for each bulb?

Main Parts of a Circuit - Review

Figure 2.22 The four basic parts of an electrical circuit

Symbols for Circuit Diagrams

Symbol	Represents	Description
-	conductor *	conducts electricity through circuit
$\rightarrow \vdash$	cell $\hat{\text { a }}$	stores electricity (large bar is positive)
$\rightarrow \mid$	battery is	combination of cells
(1)	lamp $\hat{*}$	converts electricity to light
$-\mathrm{Ha}$	resistor $\quad \star$	controls the amount of current in the circuit
\cdots	switch $\hat{\text { t }}$	opens and closes circuit-allows current to flow
-(A)-	ammeter \rangle	measures amount of current in circuit
-(1)-	voltmeter \uparrow	measures voltage across a device in a circuit
-4-	rheostat	variable resistor
(-)	motor	converts electricity to mechanical energy
\cdots	fuse	melts if current in circuit is too high

$$
\begin{aligned}
& \text { You } \\
& \text { should } \\
& \text { memorize } \\
& \text { the } \\
& \text { starred } \\
& \text { ones! }
\end{aligned}
$$

Rules for Drawing Circuit Diagrams

- use standard symbols (shown above) to show parts and connections
- electrons move from negative to positive
- All lines must be straight
- All corners must be 90° angles

Example 1

> cell

Draw a closed circuit diagram with one battery, one lamp, and one switch. Indicate the direction of electron flow.

Two Kinds of Circuits

1. Series Circuit

- only one pathway for the current
- all electrons travel through each component in the circuit
- adding loads increases resistance and decreases current.
- Current stops flowing if the circuit is broken at any point

Series Circuits

If one bulb burns out, the other bulb will burn out

Adding bulbs will decrease the brightness of each bulb.

Two Kinds of Circuits

2. Parallel Circuit

- more than one pathway for the current
- a break in one pathway does not affect other pathways in the circuit
- total current is split, with some electrons travelling through each branch, or part of the circuit.
- Adding resistance in one pathway does not affect resistance in other pathways.
- Most electrical devices in a house are connected in parallel

2. Parallel Circuits

If one bulb burns out, the other bulb is unaffected

Adding bulbs will not affect the brightness of each bulb.

- Draw
- Indicate direction of electron flow
- Label series or parallel
- Explain what happens if one bulb is

series
If one bulb is removed, the other goes
out as well
- Draw
- Indicate direction of electron flow
- Label series or parallel
- Explain what happens if one bulb is removed

c.) Draw a complete circuit that includes 2 cells and 2 lamps. The lamps are connected in series. A switch controls the entire circuit. Indicate the direction of electron flow.

d.) Draw a complete circuit that includes 2 cells and 2 lamps. The lamps are connected in parallel. A switch controls the one of the lamps but does not affect the other. Indicate the direction of electron flow.

e.) A circuit was made with 3 cells, with a total voltage of 6.0 V . There were 2 lamps connected in parallel. An ammeter was connected right after the battery and read 5.8 A. negative end
- Draw the circuit, indicate the direction of electron flow, and calculate the resistance of the circuit at the point of the ammeter.

each
f.) A circuit was made with 3 cells, with 2.0 V . There were 2 lamps and a motor connected in parallel. A resistor was connected right after the battery, and an ammeter was connected right after the resistor. The ammeter read 8.2 A.
- Draw the circuit, indicate the direction of electron flow, and calculate the resistance of the circuit at the point of the ammeter.

Brightness of Lamps

1. Each circuit shown above contains 3 lamps. In which circuit will the lamps be brighter?

$$
\begin{aligned}
& \text { "A" because it is a parallel } \\
& \text { circuit, so the flow of electrons } \\
& \text { is split }
\end{aligned}
$$

Brightness of Lamps

A

2. Draw a resistor just before Bulb 1 on each circuit. How is the brightness of the bulbs affected in:
-circuit A? Bulb A is dimmer than
bulbs $2+3$

$$
\text { bulbs } 2+3
$$

-circuit B? A ll bulbs are dimmer than they were without the resistor.

Combination Circuits

- Some loads are connected in series and others in parallel

- If bulb 1 burns out: A I I burn out

Combination Circuits

stay lit

Combination Circuits

- If bulb 4 burns out: 1,2,3 stay lit

Combination Circuits

- If bulbs $3 \& 4$ burn out:

$$
\begin{aligned}
& \text { bs } 344 \text { burn out: } \\
& \text { and out also } 2 \text { burn }
\end{aligned}
$$

Combination Circuits

Draw a Switch 1 just after the battery and Switch 2 just before bulb 3

How will the lamps be affected if switch 1 is
open and Switch 2 is closed?

$$
\begin{aligned}
& \text { and Switch } 2 \text { is closed? } \\
& \text { No complete circuit, so no } \\
& \text { bulbs lit }
\end{aligned}
$$

Combination Circuits

Draw a Switch 1 just after the battery and Switch 2 just before bulb 3

How will the lamps be affected if switch 1 is
closed and Switch 2 is open?

$$
\begin{gathered}
1,2, \Sigma \text { switch } 2 \text { is open? } \\
\text { will not be lit but lamp } 3
\end{gathered}
$$

\checkmark Check Your Understanding

Make sure you label your lamps

- Draw a circuit made with a 3-cell battery and 3 lamps. Lamp 1 is connected in parallel with lamp 3. Lamp 2 is connected in series with lamps 1 and 3 . A switch controls the entire circuit.
- Draw a circuit that contains two motors and a lamp, connected in parallel. Include two switches: one to operate the lamp and one to control the whole circuit.

The circuit below has four bulbs (A-D) and four switches (1-4).
a.) Which switch(es) should be closed to light bulbs A and D only? \qquad

The circuit below has four bulbs (A-D) and four switches (1-4).
b.) Which switch(es) should be closed to light bulb A only? \qquad

The circuit below has four bulbs (A-D) and four switches (1-4).
c.) Which switch(es) should be closed to light bulbs B and C only? \qquad

The circuit below has four bulbs (A-D) and four switches (1-4).
d.) How would you organize the switches so that you could turn all the lights on and off with a single switch?

The circuit below has four bulbs (A-D) and four switches (1-4).
e.) Is it possible to operate bulbs B and C independently of each other? Explain

4. A circuit was made with 3 cells, each with a voltage of 2.0 V . There were 2 lamps connected in parallel. An ammeter was connected right after the battery and read 5.8 A . There was also a resistor connected in series with both lamps.

- Draw the circuit and indicate the direction of electron flow
- Calculate the resistance of the circuit at the point of the ammeter

