T K

Science : MATTER E CHEMICAL

CHANGE

# Science 9

#### The Periodic Table

#### 2.2 Organizing the Elements & 2.3 The Periodic Table Today

#### Learning Targets:

- 1. Demonstrate understanding of the origins of the periodic table, and relate patterns in the physical and chemical properties of elements to their positions in the periodic table
- 2. Use the periodic table to
  - a. Identify the number of protons and electrons in each atom, as well as other information about each atom
  - b. Describe the relationship between the structure of atoms in each group and the properties of elements in that group
- One of the first attempts by a scientist to create a system for organizing the elements was made by \_\_\_\_\_\_. He developed a set of symbols for the elements:

Symbol Element



oxygen carbon gold silver mercury

 Swedish chemist Berzelius later suggested using \_\_\_\_\_\_ rather than pictures to represent each element.

- The first letter (\_\_\_\_\_\_) of an element would become the symbol
- For elements with the same first letter, a \_\_\_\_\_\_\_ second letter would be added
  - Example: "H" stands for \_\_\_\_\_\_ and "He" stands for
- It was soon realized that the elements could be listed in order of increasing

Atomic mass is the mass of one \_\_\_\_\_ of an element.

Russian chemist Dmitri \_\_\_\_\_\_ was able to organize the elements in a

way that reflected the patterns in the \_\_\_\_\_\_ of the elements.

The 18 \_\_\_\_\_\_ in the table contain \_\_\_\_\_\_ or families of

elements with similar chemical \_\_\_\_\_\_.

The \_\_\_\_\_\_ in the periodic table, called \_\_\_\_\_\_, are numbered

\_\_\_\_\_to \_\_\_\_.

|   |                          |                          |                           |                          |                             |                             |                                |                           |                          |                              |                    | a                           | atomic num                   | ber - 8                      | _                            | 2 ion          | charge         |               |
|---|--------------------------|--------------------------|---------------------------|--------------------------|-----------------------------|-----------------------------|--------------------------------|---------------------------|--------------------------|------------------------------|--------------------|-----------------------------|------------------------------|------------------------------|------------------------------|----------------|----------------|---------------|
|   | 1                        | -                        |                           |                          |                             |                             |                                |                           |                          |                              |                    |                             | sym                          | ibol                         | -0                           |                |                |               |
| 1 | <b>H</b>                 |                          |                           |                          |                             | So                          | lid S                          | Me                        | tal                      |                              |                    |                             |                              |                              | Oxygen                       | nar            | ne             | 18            |
|   | Hydrogen<br>1.0          |                          |                           |                          |                             | Liq                         | uid Br                         | Me                        | talloid                  |                              |                    |                             | atomic m                     | ass                          | -16.0                        |                | Í              | He            |
|   | (3 1+                    | <b>2</b>                 | 1                         |                          |                             | G                           | as He                          | No                        | n-metal                  |                              |                    |                             | 13                           | 14                           | 15                           | 16             | 17             | Helium<br>4.0 |
| 2 | Li                       | Be                       |                           |                          |                             |                             |                                |                           |                          |                              |                    | [                           | <b>ັ B</b> ົ                 |                              | <sup>^</sup> N <sup>5+</sup> | ິ0໌            | F              | Ne            |
|   | 6.9<br>11 1+             | 9.0<br>12 2+             |                           |                          |                             |                             |                                |                           |                          |                              |                    |                             | 10.8                         | 12.0                         | 14.0                         | 16.0<br>16 2-  | 19.0<br>17 1-  | 20.2          |
| 3 | Na                       | Mg                       |                           |                          |                             |                             |                                |                           |                          |                              |                    |                             | AI                           | Si 2+                        | P                            | S 4            | CI             | Ar            |
|   | 23.0<br>19 1+            | 24.3<br>20 2+            | <b>3</b><br>21 3+         | <b>4</b>                 | 5<br>23 2+                  | 6<br>24 2+                  | 7<br>25 2+                     | <b>8</b><br>26 3+         | <b>9</b><br>27 2+        | 10<br>28 2+                  | <b>11</b><br>29 1+ | 12<br>30 2+                 | 27.0                         | 28.1                         | 31.0<br>33 3-                | 32.1<br>34 2-  | 35.5<br>35 1-  | 39.9<br>36    |
| 4 | K<br>Potassium           | Calcium                  | Scandium                  | Ti <sup>4+</sup>         | V <sup>5+</sup><br>Vanadium | Cr 👯                        | Manganese                      | Fe <sup>2+</sup>          | Cobalt                   | Ni 3+                        | Cupper             | Zn                          | Ga                           | Germanium                    | As S+                        | Selenium       | Br             | Krymian       |
|   | 39.1<br>37 <sup>1+</sup> | 40.1<br>38 <sup>2+</sup> | 45.0<br>39 <sup>3+</sup>  | 47.9<br>40 <sup>4+</sup> | 50.9<br>41 5+               | 52.0<br>42 6+               | 54.9<br>43                     | 55.8<br>44 <sup>3+</sup>  | 58.6<br>45 <sup>3+</sup> | 58.7<br>46 2+                | 63.5<br>47 1+      | 65.4<br>48 3+               | 69.7<br>49 3+                | 72.6<br>50 2+                | 74.9<br>51 3-                | 79.0<br>52 2-  | 79.9<br>53 1-  | 83.8<br>54    |
| 5 | Rb<br>Rubidium           | Strontium                | Yttrium                   | Zr<br>Zirconium          | Nb <sup>3+</sup><br>Niobium | Molvbdenum                  | Tc <sup>3+</sup><br>Technetium | Ru<br>Ruthenium           | Rh<br>Rhodium            | Pd 4+<br>Palladium           | Ag<br>Silver       | Cd<br>Cadmium               | In 1+                        | Sn <sup>4*</sup>             | Sb <sup>5+</sup>             | Tellurium      | lodine         | Xe            |
|   | 85.5<br>55 1+            | 87.6<br>56 2+            | 88.9<br>57 3+             | 91.2<br>72 4+            | 92.9<br>73 _ 5+             | 95.9<br>74 6+               | (98)<br>75 7+                  | 101.1<br>76 2+            | 102.9<br>77 2+           | 106.4<br>78 2+               | 107.9<br>79 1+     | 112.4<br>80 1+              | 114.8<br>81 1+               | 118.7<br>82 2+               | 121.8<br>83 3-               | 127.6<br>84 2± | 126.9<br>85 1- | 131.3<br>86   |
| 6 | Cs<br>Cesium             | Barium                   | La<br>Lanthanum           | Hf<br>Hafnium            | Ta<br>Tantalum              | W <sup>2+</sup><br>Tungsten | Re **                          | Osmium                    | Ir 4+<br>Iridium         | Pt <sup>4+</sup><br>Platinum | Au 3+<br>Gold      | Hg <sup>2+</sup><br>Mercury | TI <sup>3+</sup><br>Thallium | Pb <sup>4†</sup>             | Bismuth                      | Polonium       | At<br>Astatine | Rn<br>Badon   |
|   | 132.9<br>87 1+           | 137.3<br>88_2+           | 138.9<br>89 <sup>3+</sup> | 178.5<br>104             | 180.9<br>105                | 183.8<br>106                | 186.2<br>107                   | 190.2<br>108              | 192.2<br>109             | 195.1<br>110                 | 197.0<br>111       | 200.6<br>112                | 204.4                        | 207.2                        | 209.0                        | 209            | 210            | 222           |
| 7 | Fr                       | Ra<br>Radium             | AC<br>Actinium            | Rf<br>Rutherfordium      | Db<br>Dubnium               | Seaborgium                  | Bh<br>Bohrium                  | HS<br>Hassium             | Mt<br>Meitnerium         | Ununilium                    | Uuu                | Ununbium                    |                              |                              |                              |                |                |               |
|   | (223)                    | (226)                    | (227)                     | (261)                    | (262)                       | (263)                       | (262)                          | (265)                     | (266)                    | 269                          | 272                | 277                         | ļ                            |                              |                              |                |                |               |
|   | ſ                        | 58 3+                    | 59 3+                     | 60 3+                    | 61 <u>3</u> +               | 62 <sup>2+</sup><br>3+      | 63 <sup>2+</sup><br>3+         | 64 <sup>3+</sup>          | 65 3+                    | 66 3+                        | 67 3+              | 68 3+                       | 69 2-                        | 70 2-                        | 71 3-                        | 1              |                |               |
|   |                          | Ce                       | Pr<br>Praseodymium        | NC<br>Neodymium          | Pm<br>Promethium            | Sm                          | Europium                       | Gd<br>Gadolinium          | Tb Terbium               | Dy<br>Dysprosium             | HO<br>Holmium      | Erbium                      | Tm <sup>°</sup><br>Thulium   | Yb <sup>3</sup><br>Ytterbium | Lutetium                     |                |                |               |
|   |                          | 140.1<br>90 4+           | 140.9<br>91 <u>4+</u>     | 144.2<br>92 3+           | (145)<br>93 <sup>3+</sup>   | 150.4<br>94 3+              | 152.0<br>95 3+                 | 157.3<br>96 <sup>3+</sup> | 158.9<br>97 3+           | 162.5<br>98                  | 164.9<br>99        | 167.3<br>100                | 168.9<br>101                 | 173.0<br>102                 | 175.0<br>103                 |                |                |               |
|   |                          | Thorium                  | Protactinium              | Uranium                  | Np 5+<br>Neptunium          | Pu 5+<br>6+<br>Plutonium    | Americium                      | Cm<br>Curium              | Berkelium                | Californium                  | ES<br>Einsteinium  | Fermium                     | IVIC<br>Mendelevium          | Nobelium                     | LW<br>Lawrencium             |                |                |               |
|   | l                        | 232.0                    | 231.0                     | 238.0                    | (237)                       | (244)                       | (243)                          | (247)                     | (247)                    | 251                          | 252                | 257                         | 258                          | 259                          | 262                          | ļ              |                |               |

Label each of the following on the periodic table above

- Metals, non-metals, metalloids
- o Halogens

0

Noble gases

- o Alkali metals
- Alkaline earth metals

# **Chemical Families of the Periodic Table**

Directions: List some properties of the elements in each of the following chemical families

| Chemical<br>Family (group) | Characteristics of Elements |
|----------------------------|-----------------------------|
| Alkali metals              |                             |
| Alkaline-earth<br>metals   |                             |
| Halogens                   |                             |
| Noble gases                |                             |

| At | tomic Number                              |               | atomic number -      | 8                    | 2 ion charge   |  |  |
|----|-------------------------------------------|---------------|----------------------|----------------------|----------------|--|--|
| •  | The number above the eleme                | ent's         | even hal             |                      |                |  |  |
|    | symbol on the i                           | is the        | symbol –             |                      |                |  |  |
|    | atomic number.                            |               |                      | Oxvgen               | name           |  |  |
| •  | It shows how many                         |               | atomic mass _        | 16 O                 |                |  |  |
|    | are in                                    | n the         |                      |                      |                |  |  |
|    | of of o                                   | one atom of t | the element.         |                      |                |  |  |
|    | <ul> <li>Example: Oxygen (O) I</li> </ul> | has           | protons.             |                      |                |  |  |
| •  | The atomic number also tells              | you how man   | ny                   | are in atom o        | of the element |  |  |
| At | comic Mass                                |               |                      |                      |                |  |  |
| •  | The number                                | the elen      | nent's name is the _ |                      | ·              |  |  |
| •  | Tells you the total mass of all           | the           |                      | and                  | in             |  |  |
|    | an atom.                                  |               |                      |                      |                |  |  |
| •  | The mass number represents                | the           | of the number of     | protons and neutro   | ns in an atom. |  |  |
|    | <ul> <li>Example: carbon has _</li> </ul> | prote         | ons and ne           | eutrons, so its mass | number is      |  |  |
|    |                                           |               |                      |                      |                |  |  |

# mass number – atomic number = number of neutrons

*Note*: Where applicable, round the atomic mass to the nearest whole number to get the mass number. Example: The atomic mass of titanium (Ti) is 47.9, so the mass number is 48.

| <u>Check Your Understanding</u><br>Directions: Fill in the missing information in the table |                  |         |          |           |                |                |  |  |
|---------------------------------------------------------------------------------------------|------------------|---------|----------|-----------|----------------|----------------|--|--|
| Atomic<br>symbol                                                                            | Atomic<br>number | Protons | Neutrons | Electrons | Mass<br>Number | Atomic<br>Mass |  |  |
| В                                                                                           |                  |         | 6        |           |                |                |  |  |
|                                                                                             | 11               |         |          |           | 24             |                |  |  |
|                                                                                             |                  | 31      | 37       |           |                |                |  |  |
|                                                                                             |                  |         |          | 39        | 89             |                |  |  |

#### Learning target:

1. Describe and apply different ways of classifying materials based on their composition and properties

Scientists like to organize and classify things. There are different methods of classifying substances

#### Method 1: Classification by States of Matter

Matter exists in three basic states: gas, solid, and liquid.



## Method 2: Classification by Properties of Matter

- Properties are characteristics that can be used to \_\_\_\_\_\_a substance.
- All matter has two types of properties: \_\_\_\_\_\_and \_\_\_\_\_and \_\_\_\_\_\_

## **Physical Properties of Matter**

Match the physical property of matter with the appropriate description

\_\_\_\_\_: ability to resist scratching; measured on Mohs' hardness scale from 1-10
 \_\_\_\_\_: ability to be pounded or rolled into sheets (e.g. aluminum foil)
 \_\_\_\_\_: ability to be stretched into a long wire (e.g. copper)
 \_\_\_\_\_: ability to dissolve in a liquid (e.g. sugar is soluble in water, but oil is not)
 \_\_\_\_\_: ability to conduct electricity or heat? (e.g. most metals)
 List 3 other examples of physical properties of matter: \_\_\_\_\_\_

# **Chemical Properties of Matter**

- A \_\_\_\_\_\_ property describes how a substance interacts with other substances such as \_\_\_\_\_\_.
- Chemical properties are \_\_\_\_\_\_ when a chemical \_\_\_\_\_\_ occurs.
- A chemical change results in the \_\_\_\_\_\_ of a new substance with different properties
  - Example: a pancake has different \_\_\_\_\_\_ from those of its

## Method 3: Classification by composition (by what the substance is made up of)

• All matter is <u>either a pure substance or a mixture</u>. Physical and chemical properties show us whether a substance is "pure" or a mixture.

# **Pure Substances**

• Made of only \_\_\_\_\_\_ kind of matter. A pure substance may be either a(n):

•

- 1. \_\_\_\_\_: a material that cannot be broken down into any simpler
  - substance. Elements are all organized into a \_\_\_\_\_\_according
  - to their properties. (e.g. hydrogen, carbon, and \_\_\_\_\_)
- 2. \_\_\_\_\_: the combination of two or more elements.



# Mixtures

A \_\_\_\_\_\_ is a combination of \_\_\_\_\_\_, but the • pure substances do not "chemically" combine. There are \_\_\_\_\_ main types of mixtures. 1. mixture (aka mixture) – the different substances that make up the mixture are \_\_\_\_\_\_. Examples: \_\_\_\_\_\_ 2. \_\_\_\_\_ (aka \_\_\_\_\_ mixture) – the different substances that make it up are not separately \_\_\_\_\_\_. Examples: \_\_\_\_\_\_ **3.** : a cloudy mixture in which tiny particles of one substance are held within another. Particles can be separated using \_\_\_\_\_ Example: \_\_\_\_\_\_ **4.** : similar to a suspension, but particles are so that they cannot be easily separated. Examples: \_\_\_\_\_\_ Matter Pure substances Mixtures

|                                                                                                 | Lab S                                | afety       | lass          |           |             |         |
|-------------------------------------------------------------------------------------------------|--------------------------------------|-------------|---------------|-----------|-------------|---------|
| Learning Targets<br>1. Identify and evaluate dangers of<br>2. Identify and demonstrate safe lat | caustic materials ar<br>b practices. | nd potentia | lly explosive | reactions |             |         |
| Label these Symbol<br>Shapes                                                                    | Label                                | these       | Commo         | on Ha     | zard W      | arnings |
| $\bigtriangledown$                                                                              | $\bigtriangledown$                   |             |               | E         |             | Ý       |
| $\diamond$                                                                                      |                                      |             |               |           | V           | 7       |
| 0                                                                                               | Lał                                  | pel the     | ese WH        | MIS S     | ymbols      | 5       |
| W                                                                                               |                                      | C           | Ţ             | C         | )           |         |
| M<br>I<br>S                                                                                     |                                      | (           |               |           |             |         |
| General Lab Safety Rules 1. <u>Hair</u> 2. Clothing                                             |                                      | 5. <u>C</u> | hemical Dis   | posal     |             |         |
| 3. <u>Footwear</u>                                                                              |                                      | 6. <u>S</u> | pills, equip  | ment dan  | nage, and i | njuries |

-

4. <u>Eyewear</u>

8

#### **Chemical Reactions I**

1.3 Observing Changes in Matter

#### Learning Target:

1. Investigate and describe properties of materials

## **Physical Change**

• The material changes from one \_\_\_\_\_\_ to another.

The material can also physically change back into its \_\_\_\_\_\_.

• Example: \_\_\_\_\_

# **Chemical Change**

- \_\_\_\_\_ or more materials \_\_\_\_\_\_ and create \_\_\_\_\_\_ materials.
- The new materials have completely different \_\_\_\_\_\_ from the original substances.
- Example: \_\_\_\_\_\_

# How can you tell when a chemical change has taken place?

If you make two or more of the following observations, then a CHEMICAL change has *probably* taken place.

| Evidence of a chemical change |    |  |  |  |  |
|-------------------------------|----|--|--|--|--|
|                               |    |  |  |  |  |
| 1. Change in                  |    |  |  |  |  |
|                               |    |  |  |  |  |
| 2. Change in                  |    |  |  |  |  |
|                               |    |  |  |  |  |
| 3. Formation of a             | or |  |  |  |  |
|                               |    |  |  |  |  |
| 4. Release or absorption of _ |    |  |  |  |  |

**Note:** You cannot be sure that chemical change has occurred unless you are certain that a new substance has been formed.

### **Combining Elements**

#### 3.1 Naming Compounds

#### Learning Target

- 1. Identify and describe chemicals commonly found in the home, and write the chemical symbols.
- 2. Read and interpret chemical formulas for compounds of two elements
- 3. Draw simple models of compounds
- List a cleaning product you have in your house: \_\_\_\_\_\_\_
- List a substance you might find in your kitchen for cooking or baking:
- Each of the compounds you listed above has a \_\_\_\_\_\_ and a \_\_\_\_\_\_\_and a

# **Chemical Formulas**

- Look at the chemical formula for water, shown below.
- What two elements make up water? \_\_\_\_\_\_ and \_\_\_\_\_\_
- Notice that next to the H is a small 2 as a \_\_\_\_\_ ("sub" means below)
- The 2 indicates that there are 2 \_\_\_\_\_\_ of \_\_\_\_\_ to go with every atom of oxygen in water.
- Figure 3.4 shows how the atoms in water are \_\_\_\_\_\_



Chemical formula for water



Figure 3.4 In water, two hydrogen atoms join with each oxygen atom.

**Note:** If no subscript is written next to an element, then there is only 1 atom of that element

# Indicating the physical state of a compound

- After the chemical formula, a subscript for solid (s), liquid (l), gas (g) or aqueous (aq) is used to indicate the state of the compound
- Aqueous just means the compound is dissolved in



## Check Your Understanding

Directions: Fill in the missing information in the table below

| Compound                          | Elements in | Number of Atoms of | Drawing of Compound |
|-----------------------------------|-------------|--------------------|---------------------|
|                                   | Compound    | Each Element       |                     |
| Al <sub>2</sub> O <sub>3(s)</sub> |             |                    |                     |
|                                   |             |                    |                     |
| Na <sub>2</sub> O <sub>(s)</sub>  |             |                    |                     |
|                                   |             |                    |                     |
| NaOH(s)                           |             |                    |                     |
|                                   |             |                    |                     |

## 3.2 Ionic Compounds

#### Learning targets:

- 1. Give the IUPAC name and common name of compounds with two elements
- 2. Identify examples of combining ratios/number of atoms per molecule found in some common materials, and use information on charges to predict combining ratios in ionic compounds of two elements

# **Ionic Compounds**

Ionic compounds are \_\_\_\_\_\_ formed as a result of the

attraction between particles of opposite charges, called \_\_\_\_\_\_.

Table salt (NaCl) is formed from \_\_\_\_\_ charged

\_\_\_\_\_ions and \_\_\_\_\_\_charged

\_\_\_\_\_ions



Figure 3.7 The crystals in this table salt are held together by ionic bonds.

# Some Physical Properties of Ionic Compounds

| Physical Property         | Characteristics of Ionic |
|---------------------------|--------------------------|
|                           | Compounds                |
| Classification of matter  |                          |
| State at room temperature |                          |
| Melting point             |                          |
| conductivity              |                          |
| Structure when combined   |                          |
| solubility                |                          |

- When melted or dissolved in water, they will conduct \_\_\_\_\_\_ → led to the invention of \_\_\_\_\_\_ → led to the invention of \_\_\_\_\_\_
- When an ionic compound is dissolved in water, the metal and non-metal form and

\_\_\_\_\_solution of \_\_\_\_\_\_.

An ion is an \_\_\_\_\_\_ or group of atoms that has become electrically \_\_\_\_\_\_

through the \_\_\_\_\_ or \_\_\_\_ of \_\_\_\_\_.

• Look at the examples of ion charges on the next page

## Some examples of ion charges for various elements. Fill in the missing information.

| Element  | Ion Charge | Ion Notation                         |                                                                                     |
|----------|------------|--------------------------------------|-------------------------------------------------------------------------------------|
| Hydrogen |            | H⁺                                   | To indicate ions in written notation, a                                             |
| Lithium  |            |                                      | plus sign (+) or a minus sign (-) is placed                                         |
| Nitrogen |            | N <sup>3-</sup>                      | to the upper right of the element symbol<br>• Example: sodium ion = Na <sup>+</sup> |
| Oxygen   |            |                                      | • Example: chlorine ion = Cl <sup>1-</sup>                                          |
| Iron     |            | Fe <sup>2+</sup> or Fe <sup>3+</sup> |                                                                                     |
| Copper   |            |                                      |                                                                                     |

### **Polyatomic Ions**

- "poly" means \_\_\_\_\_
- Polyatomic ions are a \_\_\_\_\_\_ of atoms acting as \_\_\_\_\_\_.
  - Example: 1 carbon and 3 oxygen form the polyatomic ion called \_\_\_\_\_\_ or
    - (\_\_\_\_\_)
- When carbonate reacts with calcium, the product is calcium carbonate, or \_\_\_\_\_\_

(CaCO<sub>3(s)</sub>)

# Naming Ionic Compounds (IUPAC Naming)

All binary ionic compounds (those containing two elements only) can be named using the following rules:

- 1.) The chemical name of the \_\_\_\_\_\_, or positive ion goes \_\_\_\_\_\_, followed by the name of the \_\_\_\_\_\_, or negative ion.
- 2.) The name of the non-metal negative ion changes its ending to \_\_\_\_\_\_.

#### **Examples:**

- NaCl is named: \_\_\_\_\_\_
- CaCl<sub>2</sub> is named: \_\_\_\_\_\_

#### Exception:

- Where negative ions are \_\_\_\_\_\_ ions, the name remains unchanged.
  - Example: CaCO<sub>3(s)</sub> is named calcium carbonate

# Using Ion Charges and Chemical Names to Write Formulas



You can find an element's charge by looking at the periodic table

| Step 1                                                                                                                                                                     | You Try!                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Write the metal element's symbol with its ion charge (you can find<br>the ion charge on the periodic table). Then write the non-metal<br>element's symbol with its charge. | Write the element symbols<br>and charges for each ion:<br>Aluminum, Fluorine |
| Ca <sup>2+</sup> Cl <sup>1-</sup>                                                                                                                                          |                                                                              |

| Step 2                                                                                  | You Try!                 |
|-----------------------------------------------------------------------------------------|--------------------------|
| Balance the ion charges. The positive ion charge must balance the negative ion charges. | Balance the ion charges: |
| In this example, each calcium ion is 2+, so we need two Cl <sup>1-</sup> to balance     |                          |
| Ca <sup>2+</sup> Cl <sup>1-</sup> Cl <sup>1-</sup>                                      |                          |
| 2+ 1- 1-                                                                                |                          |
| 2+ 2- The charges are balanced                                                          |                          |

| Step 3                                                                                                                                                                                                                                                         | You Try!                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Write the formula by indicating how many atoms of each element<br>are in it, as shown. Do not include the ion charge. Place the number<br>of atoms of each element in a subscript after the element's symbol.<br>If there is only one atom, no number is used. | Write the formula for the<br>ionic compound formed<br>from aluminum and<br>fluorine: |
| CaCl <sub>2</sub>                                                                                                                                                                                                                                              |                                                                                      |

## 3.3 Molecular Compounds

Learning Target

- 1.) Distinguish between ionic and molecular compounds, and describe the properties of some common examples of each.
- 2.) Read and interpret chemical formulas for compounds of two elements, and give the IUPAC name and common name of these compounds

When \_\_\_\_\_\_ combine, a pure substance called a molecule, or a molecular

compound, is formed. The physical properties of molecular compounds differ from ionic compound, as shown in the table below.

| Physical Property            | Characteristics of Ionic<br>Compounds | Characteristics of Molecular Compounds                                         |
|------------------------------|---------------------------------------|--------------------------------------------------------------------------------|
| Classification of<br>matter  | Pure substance                        |                                                                                |
| State at room<br>temperature | Almostalways<br>solid                 |                                                                                |
| Melting point                | high                                  |                                                                                |
| conductivity                 | Good conductors of electricity        |                                                                                |
| Structure when<br>combined   | crystal                               | No particular structure; varies from molecule to molecule                      |
| solubility                   | Dissolves in water                    | Generally does not dissolve in water (sugar, $C_6H_{12}O_6$ , is an exception) |

#### Writing Formulas for Molecular Compounds

- No \_\_\_\_\_\_ are present, and the ion charge is not used in the formulas. This makes it hard to \_\_\_\_\_\_ how non-metals combine.
- The formulas still show what elements are present, and how many of each type of atom make up the molecule.
  - **Example**: Ammonia (NH<sub>3(g)</sub>) is a molecular compound formed when three \_\_\_\_\_\_ atoms combine with one

atom.



Figure 3.15 In a molecule of ammonia, each hydrogen atom is attached to the nitrogen atom. The formula is NH<sub>3(g)</sub>.

## Naming Molecular Compounds (IUPAC Naming)

All molecular compounds, except those containing \_\_\_\_\_\_, can be named using the following rules:

1.) Name the \_\_\_\_\_\_ element in the compound (just like for ionic compounds)

\_\_\_\_\_+\_\_\_\_+

- 2.) Name the \_\_\_\_\_\_\_ element in the compound and change its ending to
  - "\_\_\_\_\_" (just like for ionic compounds)
- 3.) When there is more than one atom of an element, a \_\_\_\_\_\_ is used. Fill in

the missing prefixes in the table.

 Exception: When the first element has only \_\_\_\_\_\_ atom, the prefix "mono" not used.

| Number of Atoms | Prefix |
|-----------------|--------|
| 1               |        |
| 2               |        |
| 3               |        |
| 4               |        |
| 5               |        |

Summary: Molecular compounds are named using this format:

**Examples:** 

- 1.) CO<sub>2</sub>\_\_\_\_\_
- 2.) N<sub>2</sub>O \_\_\_\_\_
- 3.) N<sub>2</sub>O<sub>3</sub> \_\_\_\_\_\_ 4.) CCl<sub>4</sub> \_\_\_\_\_\_
- 5.) PF<sub>5</sub> \_\_\_\_\_\_

# Chemical Reactions II

| 4.1 Chemical Reactions                                                                               |                                                                                                                      |  |  |  |
|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--|--|--|
| Learning Targets                                                                                     |                                                                                                                      |  |  |  |
| 1.) Identify conditions under which properties of a material ar                                      | 1.) Identify conditions under which properties of a material are changed, and critically evaluate if a new substance |  |  |  |
| has been produced.                                                                                   |                                                                                                                      |  |  |  |
| 2.) Observe and describe evidence of chemical change in reac                                         | tions between familiar materials                                                                                     |  |  |  |
| 3.) Describe familiar chemical reactions, and represent these r                                      | reactions by using word equations and chemical                                                                       |  |  |  |
| formulas and by constructing models of reactants and proc                                            | ducts                                                                                                                |  |  |  |
|                                                                                                      |                                                                                                                      |  |  |  |
| A chemical reaction takes place when or more substances to                                           |                                                                                                                      |  |  |  |
| form a substance.                                                                                    |                                                                                                                      |  |  |  |
|                                                                                                      |                                                                                                                      |  |  |  |
| The materials at the start of a reaction are called the                                              | ·                                                                                                                    |  |  |  |
|                                                                                                      |                                                                                                                      |  |  |  |
| $\circ$ In the example of a campfire, the reactants are _                                            | and                                                                                                                  |  |  |  |
|                                                                                                      |                                                                                                                      |  |  |  |
| The new materials produced by the chemical reaction ar                                               | e called                                                                                                             |  |  |  |
|                                                                                                      |                                                                                                                      |  |  |  |
| $\circ$ In the example of a campfire, the products are _                                             | and                                                                                                                  |  |  |  |
| A chemical reaction can be written as a chemical                                                     | equation, as shown below, using the                                                                                  |  |  |  |
|                                                                                                      |                                                                                                                      |  |  |  |
| campfire example.                                                                                    |                                                                                                                      |  |  |  |
|                                                                                                      |                                                                                                                      |  |  |  |
|                                                                                                      |                                                                                                                      |  |  |  |
|                                                                                                      |                                                                                                                      |  |  |  |
| + <b>&gt;</b>                                                                                        | + +                                                                                                                  |  |  |  |
|                                                                                                      |                                                                                                                      |  |  |  |
| The reactants always appear to the of the arrow and the products to the                              |                                                                                                                      |  |  |  |
|                                                                                                      |                                                                                                                      |  |  |  |
| separate the reactants from each other and the products from each other.                             |                                                                                                                      |  |  |  |
| Recall from Chemical Reactions I (section 1.3) that when a chemical reaction occurs, a new substance |                                                                                                                      |  |  |  |
| forms and ovidence of that reaction may include one or more of the following:                        |                                                                                                                      |  |  |  |
| ionns and evidence of that reaction may include one of more of the following:                        |                                                                                                                      |  |  |  |
| 0                                                                                                    |                                                                                                                      |  |  |  |
| <u> </u>                                                                                             |                                                                                                                      |  |  |  |
| J                                                                                                    |                                                                                                                      |  |  |  |
| 0                                                                                                    |                                                                                                                      |  |  |  |

0 \_\_\_\_\_

**<u>Remember</u>**: The only way to know for sure if a chemical reaction has taken place is if one or more new substances are formed.

# **Endothermic and Exothermic Reactions**

A chemical reaction that heat energy is called an exothermic reaction • (Think **EX**othermic  $\rightarrow$  heat is **EX**iting) A chemical reaction that \_\_\_\_\_\_ heat energy is called an endothermic reaction Chemical Changes Involving Oxygen air 1. \_\_\_\_\_ is a chemical reaction that occurs when oxygen reacts with a substance to form a new substance and give off fuel heat heat \_\_\_\_\_. • is a common example of a combustion Figure 4.3 This fire triangle shows the three factors that keep a fire going. If any one reaction. of them is missing, the fire will not continue burning. 2. \_\_\_\_\_\_ is the slow chemical change that occurs when oxygen in the \_\_\_\_\_ reacts with a \_\_\_\_\_\_. A common example of corrosion is \_\_\_\_\_\_ • Write the word and chemical equation for the rusting of iron below (use Google!):  $\rightarrow$ Oxygen is a chemical reaction that takes place in the 3. cells in your body. Label the diagram below with the word and chemical equations.  $\rightarrow$ +

| 4.2 Conservation of Mass                                                                  |  |  |  |  |
|-------------------------------------------------------------------------------------------|--|--|--|--|
| Learning Target:<br>1. Observe and describe patterns of chemical change                   |  |  |  |  |
| In a chemical reaction, the total mass of the products is always the as the total         |  |  |  |  |
| mass of the This law is called the                                                        |  |  |  |  |
|                                                                                           |  |  |  |  |
| The Law of Conservation of Mass states that matter cannot be                              |  |  |  |  |
| or in a chemical                                                                          |  |  |  |  |
| reaction.                                                                                 |  |  |  |  |
| Write the chamical and word equations for the reaction pictured above:                    |  |  |  |  |
|                                                                                           |  |  |  |  |
| Mass of iron:                                                                             |  |  |  |  |
| Mass of sulfur:                                                                           |  |  |  |  |
| Total mass of reactants: Total mass of products:                                          |  |  |  |  |
| Check Your Understanding:                                                                 |  |  |  |  |
| Explain why the total mass of the reactants is the same as the total mass of the products |  |  |  |  |
|                                                                                           |  |  |  |  |
|                                                                                           |  |  |  |  |
|                                                                                           |  |  |  |  |
|                                                                                           |  |  |  |  |

# 4.3 Reaction Rates

The reaction rate refers to how fast the reaction occurs.

 Cooking an egg is example of a chemical reaction. List one way you could speed up the cooking process:

The four factors that can affect the rate of a chemical reaction are:

| 1. |  |
|----|--|
| 2. |  |
| 3. |  |
| 4. |  |

**Directions**: Fill in the missing information in the table below.

| Factor<br>Affecting<br>Reaction Rate | Explanation – How can it be used to speed up or slow down a reaction? | Example |
|--------------------------------------|-----------------------------------------------------------------------|---------|
| Catalysts                            |                                                                       |         |
| Concentration of Reactants           |                                                                       |         |
| Temperature<br>of Reactants          |                                                                       |         |
| Surface Area<br>of Reactants         |                                                                       |         |